

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

EVMC – Ethereum Client-VM Connector API {#mainpage}

ABI version 10

The EVMC is the low-level ABI between Ethereum Virtual Machines (EVMs) and
Ethereum Clients. On the EVM-side it supports classic EVM1 and ewasm [https://github.com/ewasm/design].
On the Client-side it defines the interface for EVM implementations
to access Ethereum environment and state.

Guides {#guides}

	[Host Implementation Guide](@ref hostguide)

	[VM Implementation Guide](@ref vmguide)

Versioning {#versioning}

The EVMC project uses Semantic Versioning [https://semver.org].
The version format is MAJOR.MINOR.PATCH.

The MAJOR version number is also referenced as the EVMC ABI version.
This ABI version is available to VM and Host implementations by ::EVMC_ABI_VERSION.
For example EVMC 3.2.1 would have ABI version 3 and therefore this project release
can be referenced as EVMC ABIv3 or just EVMC 3.
Every C ABI breaking change requires increasing the MAJOR version number.

The releases with MINOR version change allow adding new API features
and modifying the language bindings API.
Backward incompatible API changes are allowed but should be avoided if possible.

The releases with PATCH should only include bug fixes. Exceptionally,
API changes are allowed when required to fix a broken feature.

Modules {#modules}

	[EVMC](@ref EVMC)
– the main component that defines API for VMs and Clients (Hosts).

	[EVMC C++ API](@ref evmc)
– the wrappers and bindings for C++.

	[EVMC Loader](@ref loader)
– the library for loading VMs implemented as Dynamically Loaded Libraries (DLLs, shared objects).

	[EVMC Helpers](@ref helpers)
– a collection of utility functions for easier integration with EVMC.

	[EVM Instructions](@ref instructions)
– the library with collection of metrics for EVM1 instruction set.

	[EVMC VM Tester](@ref vmtester)
– the EVMC-compatibility testing tool for VM implementations.

Language bindings {#bindings}

Go

import "github.com/ethereum/evmc/bindings/go/evmc"

@addtogroup EVMC

Terms

	VM – An Ethereum Virtual Machine instance/implementation.

	Host – An entity controlling the VM.
The Host requests code execution and responses to VM queries by callback
functions. This usually represents an Ethereum Client.

Responsibilities

VM

	Executes the code (obviously).

	Calculates the running gas cost and manages the gas counter except the refund
counter.

	Controls the call depth, including the exceptional termination of execution
in case the maximum depth is reached.

Host

	Provides access to State.

	Creates new accounts (with code being a result of VM execution).

	Handles refunds entirely.

	Manages the set of precompiled contracts and handles execution of messages
coming to them.

EVM Storage Change Status {#storagestatus}

The description of ::evmc_storage_status enum design and its relation
to the specification in EIP-2200 [https://eips.ethereum.org/EIPS/eip-2200] and others.

Specification

This is the EIP-2200 [https://eips.ethereum.org/EIPS/eip-2200] specification with modifications:

	the clause tree has been converted to ordered lists to be referenceable,

	the cost constant names has been replaced with matching Yellow Paper names.

	If gasleft is less than or equal to gas stipend, fail the current
call frame with ‘out of gas’ exception.

	If current value equals new value (this is a no-op), Gwarmaccess
is deducted.

	If current value does not equal new value

	If original value equals current value (this storage slot has
not been changed by the current execution context)

	If original value is 0, Gsset is deducted.

	Otherwise, Gsreset gas is deducted.

	If new value is 0,
add Rsclear gas to refund counter.

	If original value does not equal current value (this storage
slot is dirty), Gwarmaccess gas is deducted. Apply both of the
following clauses.

	If original value is not 0

	If current value is 0 (also means that new value is not
0), remove Rsclear gas from refund
counter.

	If new value is 0 (also means that current value is not
0), add Rsclear gas to refund counter.

	If original value equals new value (this storage slot is
reset)

	If original value is 0, add Gsset - Gwarmaccess to
refund counter.

	Otherwise, add Gsreset - Gwarmaccess gas to refund
counter.

Cost constants

Yellow Paper	EIP-2200	EIP-2200 Value	EIP-2929 Value
————————	—————————	—————-	—————-
Gwarmaccess	SLOAD_GAS	800	100
Gsset	SSTORE_SET_GAS	20000	20000
Gsreset	SSTORE_RESET_GAS	5000	2900
Rsclear	SSTORE_CLEARS_SCHEDULE	15000	15000

Storage change statuses

	0 - zero value

	X - non-zero value

	Y - non-zero value different from X

	Z - non-zero value different form X and Y

	o - original value

	c - current value

	v - new value

 	name
 	o
 	c
 	v
 	dirty
 	restored
 	clause
 	gas cost
 	gas refund

 	[ASSIGNED]
 	0	0	0
 	no
 	yes
 	2
 	Gwarmaccess
 	0

 	X	0	0
 	yes
 	no
 	2

 	0	Y	Y
 	yes
 	no
 	2

 	X	Y	Y
 	yes
 	no
 	2

 	Y	Y	Y
 	no
 	yes
 	2

 	0	Y	Z
 	yes
 	no
 	3.2

 	X	Y	Z
 	yes
 	no
 	3.2

 	[ADDED]
 	0	0	Z
 	no
 	no
 	3.1.1
 	Gsset
 	0

 	[DELETED]
 	X	X	0
 	no
 	no
 	3.1.2.1
 	Gsreset
 	Rsclear

 	[MODIFIED]
 	X	X	Z
 	no
 	no
 	3.1.2
 	Gsreset
 	0

 	[DELETED_ADDED]
 	X	0	Z
 	yes
 	no
 	3.2.1.1
 	Gwarmaccess
 	-Rsclear

 	[MODIFIED_DELETED]
 	X	Y	0
 	yes
 	no
 	3.2.1.2
 	Gwarmaccess
 	Rsclear

 	[DELETED_RESTORED]
 	X	0	X
 	yes
 	yes
 	3.2.1.1 + 3.2.2.2
 	Gwarmaccess
 	-Rsclear + Gsreset - Gwarmaccess

 	[ADDED_DELETED]
 	0	Y	0
 	yes
 	yes
 	3.2.2.1
 	Gwarmaccess
 	Gsset - Gwarmaccess

 	[MODIFIED_RESTORED]
 	X	Y	X
 	yes
 	yes
 	3.2.2.2
 	Gwarmaccess
 	Gsreset - Gwarmaccess

Efficient implementation

All distinctive storage change statuses can be unambiguously selected
by combination of the 4 following checks:

	o ≠ c, i.e. original != current (dirty),

	o = v, i.e original == new (restored),

	c ≠ 0, i.e current != 0,

	v ≠ 0, i.e new != 0.

 	name
 	o
 	c
 	v
 	o ≠ c
 	o = v
 	c ≠ 0
 	v ≠ 0
 	checksum
 	proof

 	[ASSIGNED]
 	0	0	0
 	0	1	0	0
 	4 (0b0100)

 	X	0	0
 	1	0	0	0
 	8 (0b1000)

 	0	Y	Y
 	1	0	1	1
 	11 (0b1011)

 	X	Y	Y
 	1	0	1	1
 	11 (0b1011)

 	Y	Y	Y
 	0	1	1	1
 	7 (0b0111)

 	0	Y	Z
 	1	0	1	1
 	11 (0b1011)

 	X	Y	Z
 	1	0	1	1
 	11 (0b1011)

 	[ADDED]
 	0	0	Z
 	0	0	0	1
 	1 (0b0001)

 	[DELETED]
 	X	X	0
 	0	0	1	0
 	2 (0b0010)

 	[MODIFIED]
 	X	X	Z
 	0	0	1	1
 	3 (0b0011)

 	[DELETED_ADDED]
 	X	0	Z
 	1	0	0	1
 	9 (0b1001)

 	[MODIFIED_DELETED]
 	X	Y	0
 	1	0	1	0
 	10 (0b1010)

 	[DELETED_RESTORED]
 	X	0	X
 	1	1	0	1
 	13 (0b1101)

 	[ADDED_DELETED]
 	0	Y	0
 	1	1	1	0
 	14 (0b1110)

 	[MODIFIED_RESTORED]
 	X	Y	X
 	1	1	1	1
 	15 (0b1111)

 	impossible
 			
 	0	0	0	0
 	0 (0b0000)
 	o=c ∧ o≠v ∧ c=0 ⇒ v≠0

 			
 	0	1	0	1
 	5 (0b0101)
 	o=c ∧ o=v ∧ c=0 ⇒ v=0

 			
 	0	1	1	0
 	6 (0b0110)
 	o=c ∧ o=v ∧ c≠0 ⇒ v≠0

 			
 	1	1	0	0
 	12 (0b1100)
 	o≠c ∧ o=v ∧ c=0 ⇒ v≠0

[ASSIGNED]: @ref EVMC_STORAGE_ASSIGNED
[ADDED]: @ref EVMC_STORAGE_ADDED
[DELETED]: @ref EVMC_STORAGE_DELETED
[MODIFIED]: @ref EVMC_STORAGE_MODIFIED
[DELETED_ADDED]: @ref EVMC_STORAGE_DELETED_ADDED
[MODIFIED_DELETED]: @ref EVMC_STORAGE_MODIFIED_DELETED
[DELETED_RESTORED]: @ref EVMC_STORAGE_DELETED_RESTORED
[ADDED_DELETED]: @ref EVMC_STORAGE_ADDED_DELETED
[MODIFIED_RESTORED]: @ref EVMC_STORAGE_MODIFIED_RESTORED

EVMC Host Implementation Guide {#hostguide}

How to bring EVMC support to Your Ethereum Client.

Host interface

First of all, you have to implement the Host interface. The Host interface
allows VMs to query and modify Ethereum state during the execution.

The implementation can be done in object-oriented manner.
The ::evmc_host_interface lists the methods any Host must implement.

Moreover, each of the methods has a pointer to ::evmc_host_context
as a parameter. The context is owned entirely by the Host allowing a Host instance
to behave as an object with data.

VM usage

When Host implementation is ready it’s time to start using EVMC VMs.

	Firstly, create a VM instance. You need to know what is the name of the “create”
function in particular VM implementation. The EVMC recommends to name the
function by the VM codename, e.g. ::evmc_create_example_vm().
Invoking the create function will give you the VM instance (::evmc_vm).
It is recommended to create the VM instance once.

	If you are interested in loading VMs dynamically (i.e. to use DLLs)
check out the [EVMC Loader](@ref loader) library.

	The ::evmc_vm contains information about the VM like
name (::evmc_vm::name) or ABI version (::evmc_vm::abi_version)
and methods.

	To execute code in the VM use the “execute()” method (::evmc_vm::execute).
You will need:

	the code to execute,

	the message (::evmc_message) object that describes the execution context,

	the Host instance, passed as ::evmc_host_context pointer.

	When execution finishes you will receive ::evmc_result object that describes
the results of the execution.

Have fun!

EVMC VM Implementation Guide {#vmguide}

How to add EVMC interface to Your Ethereum VM implementation.

An example

You can start with [the example implementation of EVMC VM interface in C++](@ref example_vm.cpp).

VM instance

The VM instance is described by the ::evmc_vm struct. It contains the
basic static information about the VM like name and version. The struct also
includes the VM methods (in form of function pointers) to allow the Host
to interact with the VM.

Some methods are optional. The VM must implement at least all mandatory ones.

The instance struct must also include the EVMC ABI version (::EVMC_ABI_VERSION)
it was build with. This allows the Host to check the ABI compatibility when
loading VMs dynamically.

The VM instance is created and returned as a pointer from a special “create”
function. The EVMC recommends to name the function by the VM codename,
e.g. ::evmc_create_example_vm().

VM methods implementation

Each VM methods takes the pointer to the ::evmc_vm as the first argument.
The VM implementation can extend the ::evmc_vm struct for storing internal
data. This allow implementing the VM in object-oriented manner.

The most important method is ::evmc_vm::execute() because it executes EVM code.
Remember that the Host is allowed to invoke the execute method concurrently
so do not store data related to a particular execution context in the VM instance.

Before a client can actually execute a VM, it is important to implement the three
basic fields for querying name (::evmc_vm::name), version (::evmc_vm::version)
and capabilities (::evmc_vm::get_capabilities()) as well as the ::evmc_vm::destroy()
method to wind the VM down.

Other methods are optional.

Resource management

All additional resources allocated when the VM instance is created must be
freed when the destroy method is invoked.

The VM implementation can also attach additional resources to the ::evmc_result
of an execution. These resource must be freed when the ::evmc_result::release()
method is invoked.

Have fun!

EVMC VM Tester {#vmtester}

The EVMC project contains a EVMC-compatibility testing tool for VM implementations.

The tool is called evmc-vmtester and to include it in the EVMC build
add -DEVMC_TESTING=ON CMake option to the project configuration step.

Usage is simple as

evmc-vmtester [vm]

where [vm] is a path to a shared library with VM implementation.

For more information check evmc-vmtester --help.

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

